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This article derives theoretical results for the onset of the Helfrich–Hurault transition in
smectic C liquid crystals induced by a magnetic field applied parallel to the smectic layers. A
suitable quadratic energy in terms of the smectic layer displacement u is derived from the
nonlinear version of the smectic C energy. This energy is minimized via averaging to enable
the calculation of a critical field strength Hc for the onset of layer distortions. Comparisons
are made with known results for the corresponding geometry in the smectic A case. An
estimate for the value of the smectic C elastic constant A12 can also be made by considering
characteristic length scales.

1. Introduction

This article develops a model for the onset of layer

distortions or undulations in smectic C (SmC) liquid

crystals subjected to an applied magnetic field. There

are well known theoretical results which determine

a critical magnetic field magnitude Hc for the onset

of layer undulations in infinite samples of smectic A

(SmA) where the transition from uniformly aligned

planar layers to undulated layers is known as the

Helfrich–Hurault transition. The construction of a

relevant energy for SmC in terms of the layer

displacement u is carried out and developed here in

order to extend these results from the SmA case to

SmC. A major part of this work is to explore a possible

energy formulation which is suitable for the analysis

and determination of Hc in terms of the SmC elastic

constants and other physical parameters. Comparisons

with other smectic energies are also made and critical

Hc values are calculated in special cases. Attention

will be focused on planar layer arrangements of SmC

liquid crystals; some preliminary results from an initial

investigation in this context have been published by

Stewart [1] and it is the intention here to present a more

comprehensive account of this theory and its applica-

tion. The key result for SmC is the value of Hc given

by equation (78) later. This result, which does not

take fully general boundary conditions into account,

is particularly relevant to samples of relatively large

thickness. Nevertheless, the general results obtained

here are expected to be qualitatively representational

of any anticipated solutions. The approach that will

be implemented may be extended to cover SmC layer

distortions in other geometrical alignments of the

SmC layers, such as concentric cylindrical alignments

of SmC [2]: such an arrangement was considered

by Stewart [3] for SmA liquid crystals in a ‘wedge’

geometry. The motivation for the study of layer dis-

tortions in SmC and SmA comes from the work of

Helfrich [4] and Hurault [5] who examined infinite

samples of cholesteric liquid crystals under the influ-

ence of magnetic fields. The derivation of critical

field magnitudes for infinite samples of SmA can be

found in the books by de Gennes and Prost [6] and

Chandrasekhar [7].

Liquid crystals are anisotropic fluids consisting of

elongated molecules whose average molecular axes

locally align along a common direction in space which

is usually denoted by the unit vector n, called the

director. We shall consider SmC liquid crystals which

are known to form equidistant parallel layers in which

n generally makes a fixed constant angle h (known as

the smectic tilt angle) with respect to the layer normal.

The SmA phase occurs when hw0. Following de

Gennes and Prost [6], SmC can be described by intro-

ducing the unit layer normal a and a vector c which is

the unit orthogonal projection of n onto the smectic

planes (see figure 1). The director n is related to a and c
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via the equation

n~a cos hzc sin h: ð1Þ

From their definitions, the vectors a and c must

satisfy the constraints

a:a~c:c~1, a:c~0 ð2Þ
since these vectors are clearly unit and orthogonal. It is

also mathematically convenient to introduce the unit

vector b defined by

b~a|c: ð3Þ
In the absence of dislocations the layer normal a is

subject to the additional constraint

+|a~0 ð4Þ
originating from the work on smectics by Oseen [8].

This constraint is known to restrict the available

types of equilibrium structures for smectics consisting

of undistorted parallel layers which form planes,

concentric cylinders, spheres and the more complex

structures consisting of concentric circular tori, Dupin

cyclides [6, 9–11] and parabolic cyclides [12–15]. It

is expected therefore that when layer undulations or

distortions occur then the above constraint in equa-

tion (4) will be broken. The construction of a suitable

energy which incorporates small layer distortions

is based upon relaxing the constraints (2) and (4)

and examining the consequent changes to the usual

(undistorted layer) SmC bulk energy. This approach

has been employed in the planar aligned SmA phase in

references [6, 7] and in a more general setting for SmA

by Kleman and Parodi [16], whose methods we adapt

for our purposes in the next section.

The nine term bulk elastic energy integrand wb for a

non-chiral SmC liquid crystal can be written in terms of

the derivatives of a and c as [17]

wb~
1

2
A21 +:að Þ2

z
1

2
B2 +:cð Þ2

z
1

2
B1 a:+|cð Þ2

z
1

2
B3 c:+|cð Þ2

z
1

2
2A11zA12zA21zB3ð Þ b:+|cð Þ2

{
1

2
2A11z2A21zB3ð Þ +:að Þ b:+|cð Þ{B13 a:+|cð Þ

| c:+|cð Þz C1zC2{B13ð Þ +:cð Þ b:+|cð Þ

{C2 +:að Þ +:cð Þ ð5Þ

where the nine elastic constants Aij, Bi and Ci are

related to those introduced by the Orsay Group [18],

the minor modification being that A11~{ 1
2
A

Orsay
11 and

C1~{C
Orsay
1 . Other equivalent formulations can be

found in [17] and appendix B, while a physical inter-

pretation of the elastic constants has been discussed

by Carlsson et al. [19]; the form stated at (A19) is

particularly concise, but has the disadvantage, particu-

larly when discussing aspects of layer distortions in the

geometry of figure 1, of not containing the unit layer

normal a explicitly in its formulation. The constants

A12, A21 and A11 are related to bending of the smectic

layers while the constants B1, B2, B3 and B13, are

related to the reorientation of the vector c within

or across the smectic layers. The constants C1 and C2

are related to various couplings of these deforma-

tions. It is known that the elastic constants obey the

inequalities [19]

A12, A21, B1, B2, B3w0 ð6Þ
A12A21{A2

11w0 ð7Þ

B1B3{B2
13w0 ð8Þ

B2A12{C2
1w0 ð9Þ

B2A21{C2
2w0: ð10Þ

Figure 1. The arrangement of a planar aligned sample of smectic C liquid crystal described in cartesian coordinates. The director
n is tilted at an angle h to the layer normal a; c is the unit orthogonal projection of n onto the smectic planes. H is the
magnetic field.
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Further a priori inequalities have been derived by Atkin

and Stewart [20], namely,

A12zA21+2A11w0 ð11Þ

B1zB3+2B13w0 ð12Þ

B2zA12+2C1w0 ð13Þ

B2zA21+2C2w0: ð14Þ
It will also be relevant later to note that the smectic

tilt angle dependence of the elastic constants can be

approximated for small h by [19]

A12~Kz �AA12h
2, A21~Kz �AA21h

2, A11~{Kz �AA11h
2 ð15Þ

B1~ �BB1h
2, B2~ �BB2h

2, B3~ �BB3h
2 ð16Þ

B13~ �BB13h
3, C1~ �CC1h, C2~ �CC2h ð17Þ

where K, �AAij , �BBi and �CCi are assumed only to be weakly

temperature dependent. The elastic constant Kw0 is the

usual splay constant which arises in the SmA phase

elastic energy, given by [6, 7]

wA~
1

2
K +:nð Þ2: ð18Þ

As hp0, it is seen from (5) and (15) to (17) that wbpwA

with apn, by (1). The elastic constants Aij, Bi and Ci all

have the dimensions of energy per unit length (dyn in

cgs units). Measurements are scarce in the literature, but it

is expected that these elastic constants will be of the order

1027 dyn, similar to that for the Frank elastic constants

of nematic liquid crystal theory [6, p. 347]. A general value

for the Bi constants of By6.461027 dyn has been

indicated from the work of Schiller and Pelzl [21]. The

constant K is typically of the order 661027 dyn [6].

The magnetic energy density, ignoring a contribution

which is independent of the orientation of n, may be

written as [6, p. 287]

wm~{
1

2
xa n:Hð Þ2 ð19Þ

where H is the magnetic field and xa is the magnetic

anisotropy of the liquid crystal, typically of the order

1027 in cgs units. When xaw0 the director prefers

to align parallel with the magnetic field; n will tend

to align perpendicular to the field when xav0. We

shall assume that xaw0 and that H is applied in the

x-direction as shown in figure 1. In this case, the

director will be attracted by the field in such a way that

the layers can be expected to distort when H~|H| is

greater than some critical value Hc.

The relevant energies are derived in § 2 for small

layer displacements u(x, y, z) in SmC and are compared

with those for the SmA case. A comparison with the

work of the Orsay Group is made and it is also shown

in appendix B that for each of the three usual equiva-

lent nonlinear formulations of the bulk energy wb, the

same quadratic energy in terms of u arises for variables

separable solutions. The selection of the forms for the

perturbations to the vectors a and c are motivated by

the work by Stallinga and Vertogen [22] who have given

a quite general formulation of these vectors for smectic

phases in terms of u and its derivatives. (We note here

that u corresponds to the component denoted by uz
in [22]: this is because the components ux and uy,

also introduced in [22], do not enter the theory.) The

consequent energies are summarized in § 2.5. The

possibility of elementary periodic solutions dependent

upon x, y and z is considered in § 3.1 where it is shown

that, for small smectic tilt angles h, no y-dependent

distortions or undulations are to be expected for the

geometry depicted in figure 1 during the initial stages

of any distortions. Section 3.2 then goes on to consider

the special case of u~u(x, z). A critical magnetic field

magnitude Hc is derived in this case for the onset of the

Helfrich–Hurault transition (equation (78) below) and

its connections with results elsewhere in the literature

are highlighted. An estimate for the elastic constant A12

is also made for the SmC phase of the liquid crystal

TBBA. Section 3.3 considers and comments upon the

simplified version of events when u~u(x). Section 4

concludes with a brief discussion.

2. Energies

In this section we construct the relevant energies for

calculations and make some comparisons with earlier

work on distortion energies. It will also be seen that the

energy we construct will collapse in a natural way to

that for the well known case of SmA liquid crystals

when the limit hp0 is taken in the smectic tilt angle.

2.1. Forms for a and c
Smectic layers are surfaces corresponding to an

equation of the form

W x, y, zð Þ~constant ð20Þ
so that the unit layer normal can be written as

a~+W/|+W|. Let u(x, y, z) be a small displacement of

the layers. When uw0 then, in the geometry of figure 1,

W~z and a~(0, 0, 1). If such a uniform planar align-

ment is disturbed by the small displacement u then we

can suppose that to first order in u

W~z{u x, y, zð Þ: ð21Þ
Following Kleman and Parodi [16], we can set

a~
+W
+Wj j~

+W
1{e

ð22Þ

e~1{ +Wj j ð23Þ
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where e is the relative small dilation of the layers. The

expression for the SmC layer compression energy can

now be derived by adapting the relevant arguments

contained in [16]. Notice that when e~0, or, equiva-

lently, |+W|~1, the constraint +6a~0 in equation (4)

is recovered.
In the general derivation of the bulk elastic energy

there is a need to retain up to second order in u and

its first derivatives when working with a and c to

guarantee that all the correct terms to second order

appear in the final (quadratic) energy: this is especially

true for geometries other than planar, as is the case in

the work of Kleman and Parodi [16] for SmA. Working

to first order in u is sufficient when constructing a

in the planar aligned SmA case, but in SmC more

care is needed in, for example, the construction of

the magnetic energy density because of the additional

symmetries that are intrinsic to this phase. Further, this

approach may well lend itself to adoption in later work

for SmC in non-planar geometries.

Working to second order in u and its first derivatives

gives

+Wð Þ2
~1{2uzz +uð Þ2 ð24Þ

+Wj j~1{uzz
1

2
u2
xzu2

y

� �
ð25Þ

+Wj j{1
~1zuz{

1

2
u2
xzu2

y

� �
zu2

z ð26Þ

where suffices denote partial differentiation of u with

respect to the indicated variables. Therefore from

equations (22) and (23)

a~+W +Wj j{1

~ {ux 1zuzð Þ, {uy 1zuzð Þ, 1{
1

2
u2
xzu2

y

� �� �
ð27Þ

e~uz{
1

2
u2
xzu2

y

� �
: ð28Þ

This setting of a coincides with that of Stallinga and

Vertogen [22] up to second order in the first derivatives

of u. Notice, by equation (23), that e remains as stated

in (28) under the transformation W.{W; also note

that uz is unchanged under the simultaneous changes

u.{u and z.{z.

It now remains to identify a correct meaningful

form for the vector c. To this end, we adopt the general

description for a and c proposed by Stallinga and

Vertogen [22]. Let a, w and y be the usual Eulerian

angles where, in this present context, we let a be

directed along the axis OC pictured in figure 2. The

nutation angle ZÔC is represented by a, w is the

precession angle XÔN, and y, being the angle NÔA,

corresponds to a rotation of a about its own axis. In

this description we can write [22]

a~ sin a cos w, sin a sin w, cos að Þ ð29Þ

c~{ sin yð Þ cos a cos w, cos a sin w,{ sin að Þ

z cos yð Þ { sin w, cos w, 0ð Þ
where

sin a~
+\Wj j
+Wj j , cos a~

1{uz

+Wj j ð31Þ

sin w~{
uy

+\Wj j , cos w~{
ux

+\Wj j ð32Þ

and +\W~(2ux,2uy, 0). There is an element of

indeterminacy in the selection of w and y in the limit

as ap0: this is resolved by setting w and y in such a

way that c coincides with (1, 0, 0) in the Cartesian

coordinates to match the unperturbed configuration in

figure 1 when aw0 and uw0. By setting

a~0 and wzy~3p=2 ð33Þ
we can recover the unperturbed configuration in

figure 1. Further, for small changes in a which will be

related to small changes in u, it is possible to employ

the approximations

sin y~{ cos wz tan a sin2 w ð34Þ

cos y~{ cos a sin w{ sin a sin w cos w ð35Þ
so that the conditions in equation (33) hold in the limit

as ap0. It is easily verified that sin2yzcos2y~1 to

second order in a when a|0. Inserting equations (34)

and (35) into the expression (30) and using (31) and

(32) allows c to be evaluated to second order in the first

Figure 2. Description of the Eulerian angles a, w and y
relative to the usual Cartesian coordinate system used to
describe the orientation of the unit vectors a and c
introduced in the text.

(30)
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derivatives of u as

c~ 1{
1

2
u2
xzu2

y

� �
, uy 1zuzð Þ, ux 1zuzð Þzu2

y

� �
: ð36Þ

Notice that a, given by (29), coincides with the

expression (27) when evaluated to second order in

the first derivatives of u, which demonstrates the

consistency of the above choices for w and y in the

description of a and c introduced above. The vector

b~a6c is now represented by

b~ {uy 1zuxzuzð Þ, 1{u2
y, uy 1{uxzuzð Þ

� �
: ð37Þ

It is a simple exercise to verify that the SmC constraints

in equation (2) are then satisfied to second order in u

for these forms of a and c. Additionally, we have

bea~bec~0 and |b|~1, to second order in u. The

quantity +6a is small and does not vanish; as

mentioned in the introduction, this is as anticipated

and is analogous to the situation in [16].
The form of c in equation (36) may be interpreted

via the following observation. Given the geometry of

figure 1, the director appears more likely to align

further with the applied magnetic field along the x-axis

rather than the y-axis in the initial stages of reorienta-

tion when xaw0. Looking locally in the xz-plane in

figure 1, an initial small perturbation in c ought to be

like (1, 0, ux) when a<(2ux, 0, 1) if y-dependence is

ignored and ux is negative: this is indeed the case when

the above forms for a and c are taken to first order in

the first derivatives of u.

2.2. Layer compression energy

In the absence of deformations, the smectic layers

are expected to have equal layer spacing and in these

circumstances, for the present discussion on energies,

we suppose initially that a~+W so that before dis-

tortions take place +6a~0 and |+W|~1. If W changes

slightly at the onset of deformations and we assume

that the density remains constant then we expect a

contribution to a layer compression energy of the form

[16, p.673]

wL~
1

2
+W{að Þ:B: +W{að Þ ð38Þ

where the second order tensor B has axial symmetry

around a, due to the planar layer alignment. Thus in

cartesian component form we can consider

Bij~B\dijz BE{B\
� �

aiaj ð39Þ
where B|| and B\ are the layer compression constants

relative to the directions parallel and perpendicular to

a, respectively. The above form for B has been derived

with the expectation that the layer normal a in SmC

will play a similar rôle to that of the director n in SmA.

Assuming the form for a given by equation (22),

inserting it into (38) and (39) and simplifying gives

wL~
1

2

+Wj j2

1{eð Þ2
B\z BE{B\

� � +Wj j2

1{eð Þ2

" #
e2 ð40Þ

and, since equation (22) holds with |a|~1, this finally

leads to the usual type of energy term, namely,

wL~
1

2
�BBe2 ð41Þ

where, for notational convenience, we henceforth

denote B|| by �BB. From (41) and (28) we arrive at the

form

wL~
1

2
�BBu2

z ð42Þ

when we retain terms to second order only in the

first derivatives of u. The possible inclusion of higher

order terms in wL is briefly mentioned in § 4. It is

not necessary to include these higher order terms to

determine critical thresholds; however, a description for

post-threshold behaviour may require them. The layer

compression constant �BB describes the elastic resistance

to changes in the smectic layer thickness and it

has dimensions of energy per unit volume (dyn cm22

in cgs units): it has been estimated to be of the

order 107 dyn cm22 in SmA, for example [16, 23].

Measurements by Collin et al. [24] indicate that
�BB*8:95|108 dyn cm{2 for the liquid crystal TBBA

in its SmA phase, while in its SmC phase
�BB*8:47|107 dyn cm{2.

2.3. Bulk elastic energy

Straightforward calculations involving the above

versions of a, b and c lead to the quantities listed in

appendix A. When these are substituted into the bulk

energy wb in equation (5) we obtain

wb~
1

2
A12u

2
xxz

1

2
B2zA21z2C2ð Þu2

yyz
1

2
B2u

2
xzz

1

2
B3u

2
yz

z
1

2
B1zB3{2B13ð Þu2

xyz
1

2
2B13{B3{2A11{2C1ð Þuxxuyy

z B2zC2ð Þuyyuxzz B13{B3ð Þuxyuyzz B13{C1ð Þuxxuxz:

The integrand expressions in wb can be simplified

following the methods outlined in [6, p. 343]. Integrat-

ing by parts with respect to x and again with respect to

z shows that for any volume Vð
V

u2
xz dV~

ð
V

uxxuzz dVzS1 ð44Þ

where S1 is a surface contribution to the total energy,

in the sense that it is a quantity evaluated at some fixed

(43)
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surface. Similarlyð
V

u2
yz dV~

ð
V

uyyuzz dVzS2 ð45Þ

ð
V

u2
xy dV~

ð
V

uxxuyy dVzS3 ð46Þ

ð
V

uxyuyz dV~

ð
V

uxzuyy dVzS4: ð47Þ

Terms which only ever enter the energy when evaluated

at a boundary surface can be considered as not

influencing the bulk layer orientation: their presence,

as noted in [16], would merely shift the total energy by

a constant amount, of little physical significance

whenever the boundary conditions are neglected. As

in the SmA case, terms involving uzz can be ignored

since they will be dominated by the �BBu2
z term in wL [6,

p. 343]. An application of the formulae in equations (44)

to (47) to wb, omitting the uzz terms and neglecting

surface contributions, gives

wb~
1

2
A12u

2
xxz

1

2
B2zA21z2C2ð Þu2

yy

z
1

2
B1{2 A11zC1ð Þ½ �uxxuyy

z B2{B3zB13zC2ð Þuyyuxzz B13{C1ð Þuxxuxz: ð48Þ

Other simplifications are possible. For example, if the

energy is to be invariant to the change in sign zp2z (as

in the SmA case) then the last two terms in (48) can

also be ignored. Rather than impose such a restriction

at this stage, it is readily observed that if variables

separable solutions of the form

u~f xð Þg yð Þh zð Þ ð49Þ
are sought then the last two terms in (48) integrate to

products of functions evaluated on appropriate bound-

aries and can then be ignored for the reason mentioned

above, especially if the boundaries in the xy-plane are

considered to have negligible influence. In particular, if

it is supposed that 0ƒzƒd, where d is the sample depth

in the z-direction, and that u has no displacement at the

boundary surfaces in z, that is,

h 0ð Þ~h dð Þ~0 ð50Þ
then such terms equate to zero exactly. When this is the

case, then

wb~
1

2
A12u

2
xxz

1

2
B2zA21z2C2ð Þu2

yy

z
1

2
B1{2 A11zC1ð Þ½ �uxxuyy

and a comparison with the bulk energy introduced by the

Orsay Group [18] is then possible. Notice that the first

two terms in equation (51) are positive by equations (6)

and (14). In the notation for constants adopted here,

the approximate nine-term Orsay energy for planar layers

of SmC corresponding to equation (5) is [18]

wb~
1

2
B1

LVz

Lx

� �2

z
1

2
B2

LVz

Ly

� �2

z
1

2
B3

LVz

Lz

� �2

zB13
LVz

Lz
LVz

Lx

{A11
LVx

Lx

� �2

z
1

2
A12

LVy

Lx

� �2

z
1

2
A21

LVx

Ly

� �2

{C1
LVx

Lx
LVz

Lx
zC2

LVx

Ly
LVz

Ly ð52Þ

where V~(Vx,Vy,Vz) is an arbitrarily small rotation

applied to the original undisturbed vectors a, b and c

being given as in figure 1. As in [6, 17, 18], setting

a? 0,0,1ð ÞzV| 0,0,1ð Þ~ Vy,{Vx,1
� �

ð53Þ

c? 1,0,0ð ÞzV| 1,0,0ð Þ~ 1,Vz,{Vy

� �
ð54Þ

shows from equations (27) and (36) that, upon con-

sidering a and c to first order in the first derivatives of

u, the energies should be comparable if we choose

Vx~uy, Vy~{ux, Vz~uy: ð55Þ
In [6], Vz was not assigned any value in terms of the

derivatives of u. If, however, we adopt the above values

in (55) then equation (52) collapses to (51) under the

same assumptions contained in (49) and (50), using the

relations (45) to (47) and, as before, omitting the terms

containing uzz. This demonstrates that equation (51) can

be related to the alternative Orsay version to second

order in the second derivatives of u if it is additionally

supposed that the rotation is restricted so that (55)

holds.

It should be noted here that wb can be written

in various equivalent formulations in terms of the

vectors a, b and c and their gradients. For each

such formulation the essential result for wb in equa-

tion (51) presented above remains valid, as shown in

appendix B.

2.4. Magnetic energy

Putting a and c, given by equations (27) and (36),

into (1) and (19) with H~(H, 0, 0) gives, to second

order in the first derivatives of u,

wm~{
1

2
xaH

2 cos 2hð Þu2
xz 1{u2

y

� �
sin2 h

h
{ sin 2hð Þux 1zuzð Þ

i
:

The term in ux can be obviously integrated to an

evaluation on the boundaries leaving the energy as

wm~{
1

2
xaH

2 cos 2hð Þu2
xz 1{u2

y

� �
sin2 h

h
{ sin 2hð Þuxuz

i
(51)

(56)

(57)
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while if a solution of the form given by (49) is

additionally assumed then the term in uxuz is similarly

evaluated on boundaries (being zero if (50) holds). This

then leads to

wm~{
1

2
xaH

2 cos 2hð Þu2
xz 1{u2

y

� �
sin2 h

h i
: ð58Þ

Although wm has an unfamiliar appearance, it is

particularly instructive to draw attention to the two

special cases for wm when h~0 and h~ p
2
. For h~0 the

magnetic energy density ought to collapse to that for

the SmA phase, and indeed

wm~{
1

2
xaH

2u2
x ð59Þ

in this case, exactly the form used by de Gennes and

Prost [6, p. 363] when considering the geometry in

figure 1 for SmA with xaw0. For h~ p
2
,

wm~
1

2
xaH

2 u2
xzu2

y

� �
{

1

2
xaH

2: ð60Þ

Notice that there is no minus sign in the first term

on the right-hand side of (60). The last term in (60)

is independent of the orientation of n or u and, as

is common practice in liquid crystal theory, can be

ignored in the construction of the energy: but (60)

is precisely the form for wm discussed in [6, p. 344]

and Stewart [25] for the case when H is applied

perpendicular to the layers in SmA (in which case xa

must be negative for layer distortions to occur). In this

scenario, at h~ p
2
, the layers can effectively be thought

of as becoming SmA layers perpendicular to the field

depicted in figure 1. The expression for wm in equa-

tion (58) for SmC is therefore a natural and meaningful

extension to that for SmA; further, it is necessary

to include the second order terms in a and c above,

otherwise the special cases just mentioned do not

collapse to the SmA cases because an additional

quadratic contribution would have been overlooked.

Also, as will be mentioned in § 3.3 below, wm in

equation (58) yields the same bulk elastic constant

component (and h dependence) as that obtained by

Kedney and Stewart [26] at the critical field magnitude

for an analogous problem involving an electric field

when, in a first approximation in the application of

SmC theory, the layer compression contribution to the

energy is neglected.

2.5. Total energy

To summarize, the total energy density for planar

aligned SmC in the geometry of figure 1, ignoring

surface contributions, is given via equations (42), (48)

and (57) as

w~wLzwmzwb

~
1

2
�BBu2

z{
1

2
xaH

2

| cos 2hð Þu2
xz 1{u2

y

� �
sin2 h{ sin 2hð Þuxuz

h i

z
1

2
A12u

2
xxz

1

2
B2zA21z2C2ð Þu2

yy

z
1

2
B1{2 A11zC1ð Þ½ �uxxuyy

z B2{B3zB13zC2ð Þuyyuxzz B13{C1ð Þuxxuxz:
ð61Þ

This energy density incorporates contributions up to

squared order in the derivatives of u. Moreover, if

solutions of the form (49) satisfying (50) are also

supposed then this energy simplifies further via

equations (51) and (58) to

w~
1

2
�BBu2

z{
1

2
xaH

2 cos 2hð Þu2
xz 1{u2

y

� �
sin2 h

h i

z
1

2
A12u

2
xxz

1

2
B2zA21z2C2ð Þu2

yy

z
1

2
B1{2 A11zC1ð Þ½ �uxxuyy: ð62Þ

The total energy integral is of course

W~

ð
V

w dV ð63Þ

where V is the volume of the liquid crystal sample.

The results from equations (15) to (17) can be inserted

into w in (61) or (62) to find that in the limit as hp0 we

obtain the related SmA bulk energy, namely,

wSmA~
1

2
�BBu2

z{
1

2
xaH

2u2
xz

1

2
K uxxzuyy
� �2 ð64Þ

which is discussed in [6, 7, 25]. Equation (64) is also

related to the energy discussed by de Gennes [27] when

changes in density are ignored (for the magnetic field

direction considered here). This further demonstrates

that the total energy density w constructed here is a

meaningful extension to SmC from the SmA theory for

layer distortions.

We aim to employ periodic solutions which will be

averaged over the sample volume with the purpose of

determining critical behaviour via a minimization pro-

cess: this is the elementary approach adopted in [6, 7].

3. Periodic solutions

We begin by showing in § 3.1 that solutions with

non-zero finite periods in all three variables x, y, and z

cannot minimize the averaged energy in equation (62)

when the tilt angle h is small; that is, when the sample is

close to the SmA phase. This preliminary observation
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requires applications of the inequalities in § 1 for

the elastic constants, and is valid when considering a

sample in which the boundaries to the xy-plane have a

negligible effect upon the bulk of the sample. It also

supports the assumption that, in general, solutions are

not expected to have a periodic dependence in y for the

geometry in figure 1 in the initial stages of deformations

when H is near some critical threshold, and leads on to

the results in § 3.2 for solutions periodic in x and z.

3.1. Solutions periodic in x, y and z

We seek periodic solutions of the form

u~u0 sin kxð Þ sin pyð Þ sin qpz=dð Þ,

q a positive integer

with u0 a constant, which satisfy equations (49) and

(50). For periodic functions f having period P, we

introduce the average n fm defined by

S f T~
1

P

ðP
0

f mð Þ dm: ð66Þ

For example, any functions of the form sin2 (y),

cos2 (y) or G~constant result in

Ssin2T~Scos2T~
1

2
, SGT~G: ð67Þ

Since equation (65) is of variables separable form we

can average the bulk energy w in (62) and employ the

results from (67) to show that

SwT~
1

16
u2

0
�BBq2p2

�
d2{xaH

2 k2 cos 2hð Þ{p2 sin2 hð Þ
� 	


zA12k
4z B2zA21z2C2ð Þp4z B1{2 A11zC1ð Þ½ �k2p2

�
{

1

2
xaH

2 sin2 hð Þ: ð68Þ

This averaged energy is minimized with respect to q at

q~1, given that q is a positive integer. We now have to

find positive values for k and p that minimize nwm, given

that no boundary conditions have been imposed in the

x- or y-directions. For nwm to be minimized with respect

to a non-zero value of p it is a necessary condition that

0~
L
Lp

SwT~
1

8
u2

0p 2 B2zA21z2C2ð Þp2



z B1{2 A11zC1ð Þ½ �k2zxaH
2 sin2 hð Þ

�
:

From the inequality (14) the coefficient of p2 inside

the square bracket in equation (69) is always positive.

Further, for small h, the approximations in (15), (16)

and (17) can be employed to see that

B1{2 A11zC1ð Þ& �BB1{2 �A11A11

� �
h2z2 K{�CC1h

� �
w0 ð70Þ

for h sufficiently small, since Kw0. Thus, since xaw0,

all the terms in the square bracket on the right-hand

side of equation (69) are always positive for non-zero

values of p when h is small, and so there can be no

solutions of the form (65) which are periodic in y for

the problem considered here when the SmC sample is

close to the SmA phase. This has the consequence that

one-dimensional distortion patterns or layer undula-

tions are to be expected rather than two-dimensional

patterns. In SmA both types of pattern can occur, as

indicated by Fukuda and Onuki [28] and Stewart [25],

but the preliminary result above seems to indicate that

one-dimensional patterns are to be preferred during the

initial occurrence of distortions in the SmC phase when

the smectic tilt angle h is small.

3.2. Solutions periodic in x and z

When u~u(x,z) the energy density for variables

separable solutions in equation (62) becomes

w~
1

2
�BBu2

z{
1

2
xaH

2 cos 2hð Þu2
xz sin2 hð Þ

� 	
z

1

2
A12u

2
xx: ð71Þ

Bearing in mind that nwm above is minimized at q~1

(giving the minimum non-zero average for the layer

compression energy contribution), let

u~u0 sin kxð Þ sin pz=dð Þ: ð72Þ
After averaging in a similar way to that in equation (68)

over a sample of unit length in y, we have

SwT~
1

8
u2

0
�BBp2

�
d2zA12k

4{xaH
2k2 cos 2hð Þ

� 	
{

1

2
xaH

2 sin2 hð Þ:

Also, for the undistorted state uw0,

Sw u:0ð ÞT~{
1

2
xaH

2 sin2 hð Þ ð74Þ

and therefore a comparison of energies between the

variable and zero solutions gives

DSwT~Sw uð ÞT{Sw u:0ð ÞT

~
1

8
u2

0
�BBp2

�
d2zA12k

4{xaH
2k2 cos 2hð Þ

� 	
:

ð75Þ

The above result for Dnwm is reminiscent of that arising

in SmA [7, p. 314]. The critical field Hc is found by

minimizing Dnwm over non-zero values of k and then

determining the least value of H above which Dnwm will

become negative, indicating the system’s preference for

adopting the distorted variable solution u rather than

the zero solution. The right-hand side of equation (75)

can be minimized with respect to non-zero values of k

to find that its minimum occurs when k~kx given by

k2
x~

xaH
2

2A12
cos 2hð Þ: ð76Þ

(73)

(65)

(69)
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(Recall that A12w0 by equation (6)). For k~kx we can

write

DSwT~
1

8
u2

0
�BB
p2

d2
{

x2
aH

4

4A12
cos2 2hð Þ

� 

: ð77Þ

As H increases from zero, it is seen that the averaged

energy difference Dnwm will decrease through zero and

that the critical magnetic field strength Hc will be given

by

xaH
2
c cos 2hð Þ~2 �BBA12ð Þ

1
2
p

d
:2p

A12

ld
, ð78Þ

where

l~
A12

�BB

� �1
2

ð79Þ

can be introduced as a characteristic length scale

to allow comparisons with known results for SmA.

Additionally, kx defined in (76), becomes kc at H~Hc,

where

k2
c~

p

ld
: ð80Þ

The product �BBA12 can be determined at Hc via

equation (78).

The results from equations (15) and (16) can be

inserted into (78) and (79) to find that at h~0 we have

xaH
2
c~2p

K

ld
, l~

K
�BB

� �1
2

ð81Þ

which is precisely the result mentioned by de Gennes

and Prost [6, p.363] for the critical field strength at the

onset of the Helfrich–Hurault transition in SmA, K

being the usual splay constant arising in (18) for the

SmA elastic energy. This shows that the threshold

derived in equation (78) is a natural extension of the

result from the SmA case to SmC.

Following de Gennes and Prost [6, p. 363], we

can estimate l to be of the order of a microscopic

length scale and, as an example, set l~20 Å. This

allows A12 to be estimated from equation (79) if �BB is

known. To obtain an estimate for a typical SmC

material we can take the value of �BB stated above in § 2.2

for the liquid crystal TBBA in its SmC phase, namely
�BB~8:47|107 dyn cm{2, to find from (79) that

A12&3:39|10{6 dyn ð82Þ
comparable to the Frank elastic constant K~K1 of

nematic theory which is also used in the description

of SmA. We can adopt the values used in [6, p. 363]

for SmA and estimate a typical critical threshold Hc

for SmC by setting l~20 Å, h~22‡, sample depth

d~1 mm, xa~1027, and use the above estimate in (82)

for A12, to find that the critical value for the field

strength is given by Hc<1226103 Oe, which is about

twice the magnitude of that for a typical SmA [6]. For

example, when the other parameters are as previously

stated, we can estimate K~1026 dyn to find that from

equation (81)1 we have Hc<566103 Oe for SmA.

3.3. Solutions for u~u(x)

For u~u(x) the layer compression term does not

enter the energy. Nevertheless, it is worthwhile seeking

such solutions to compare with an earlier result by

Kedney and Stewart [26] which ignored the layer com-

pression effects in a first attempt to apply the SmC

continuum theory of Leslie et al. [15, 17] to layer

undulations induced by an electric field. Suppose the

liquid crystal sample is bounded by plates at x~0 and

x~d giving the ‘bookshelf’ geometry (cf. figure 1) and

that the layers do not distort at the boundaries. As an

approximation, we can choose the first mode approach

for an ansatz and set

u~u0 sin
p

d
x

� �
ð83Þ

which ensures that u~0 at x~0, d. Over a sample

volume V which is unit in the y and z directions with

0ƒxƒd, the energy comparison for W, given by

equations (61) and (63), between u and the zero solution

becomes

DW~W (u){W (u:0)

~
1

2
u2

0

ðd
0

A12½ p

d

� �4

sin2 p

d
x

� �

{xaH
2 p

d

� �2

cos (2h) cos2 p

d
x

� �

dx

~
1

4

p2

d
u2

0 A12
p

d

� �2

{xaH
2cos (2h)

� 

ð84Þ

and therefore

xaH
2
c cos 2hð Þ~A12

p

d

� �2

: ð85Þ

This is identical to the threshold obtained by Kedney

and Stewart [26, eqn. (76)] when the substitutions

eae0.xa and 2h.d are made. Their approach differs

from that used here and does not include any layer

compression term, just as in this special case where

assuming u~u(x) excludes the possibility of using the

layer compression energy. Therefore the results of the

previous section extend earlier ideas by incorporating

layer compression or dilation for SmC and are

compatible with the basic results in [26].

4. Discussion

The results presented here are consistent extensions

to SmC liquid crystals of the results which are known
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for the SmA phase. As indicated above, for example, as

the smectic tilt angle h tends to zero we recover the

known results for the onset of smectic layer distortions

in SmA. The main result is an identification of a critical

field strength Hc, given by equation (78), that indicates

the possible onset of one-dimensional distortions or

undulations of the smectic layer structure of the SmC

phase. This critical field strength also enables an

estimate to be made for the elastic constant A12 when
�BB has been evaluated, or vice-versa: equation (82)

provides an estimate of A12 for the liquid crystal

TBBA in its SmC phase using a measurement for �BB
reported elsewhere [24]. Approximate calculations in

§ 3.2 revealed that the critical magnetic field strength Hc

for TBBA in the SmC phase can be expected to be

higher than that anticipated for a typical SmA material.

These results were obtained by searching for solutions

for the layer displacement u which were periodic in x

and z, and looking at the difference in the averages of

the total energy of the system between the perturbed

state u and the unperturbed state uw0. The energy

density used in calculations was provided by equa-

tion (62). It was also found that if u~u(x) then layer

compression was absent and the earlier results obtained

by Kedney and Stewart [26] by a more elementary

approach were recovered.

The possibility of smectic layer ‘buckling’ in SmA

liquid crystals induced by an electric field has been

reported by Geer et al. [29]. The analysis of the onset

and behaviour of such a phenomenon as the electric

field magnitude is increased involves a different

approach to that presented here and entails the analysis

of a nonlinear differential equation arising form the

minimization of the energy in terms of the smectic layer

displacement u: higher order terms in the first deriva-

tives of u are also taken into account in the layer

compression term. Essentially, the layer compression

energy becomes, via equations (28) and (41),

wL~
1

2
�BBe2~

1

2
�BB uz{

1

2
u2
xzu2

y

� �� 
2

ð86Þ

where, as pointed out by Singer [30], inclusion of the

first derivative term proportional to (u2
xzu2

y) is essen-

tial in order to describe any possible post-threshold

transition from a sinusoidal distortion to a buckling

distortion, as the magnitude of the field increases above

the critical field strength. The investigation of the

possibility of layer buckling in SmC liquid crystals may

well be worthwhile, given that similarities have been

identified in § 2 and § 3 for SmA and SmC at the onset

of smectic layer distortions. To obtain a more accurate

model of distortions as the field magnitude increases,

we would expect to include more elastic terms in the

above description at equation (62) for SmC by constructing

the energy to a higher order in the derivatives and

powers of u. The model introduced above in § 2 and

§ 3 will be particularly relevant near the critical

field threshold.

It should perhaps also be mentioned that Ribotta

and Durand [31] have considered mechanical instabil-

ities in SmA liquid crystals induced by dilative or

compressive stresses. Their theoretical predictions and

experimental results may be of interest if one were to

contemplate similar experimental set-ups for SmC

liquid crystals. Ribotta and Durand also considered

some elementary aspects of the dynamics of an undula-

tion instability in SmA and these may prove to be

relevant in the dynamics of any possible distortions or

undulations in SmC liquid crystals.

Some preliminary results for layer distortions in

ferroelectric smectic C liquid crystals (SmC*) have

been reported by Stewart [32] in the case of an applied

electric field. The critical electric field threshold Ec is

more complex than the form for Hc and involves other

elastic constants and the spontaneous polarization P0,

inherent to SmC* liquid crystals.

The techniques used here may be of relevance to work

on electrically driven instabilities in thin films of SmC or

SmC* liquid crystals and in this context the reader should

consult the work of Ried et al. [33, 34]. There is also a

comprehensive study of electrically driven effects and

electroconvection by Pleiner et al. [35]. Some experiments

on electroconvection effects on freely suspended films of

SmC and SmC* by Langer and Stannarius [36] have also

been made.

In conclusion, the investigation of smectic layer

distortions in SmC presented here may lead to a

valuable experimental determination of the elastic con-

stant A12 via the critical magnetic field strength Hc

given by equation (78). The relationship between this

constant and the SmC layer compression constant �BB
may also be determined.

Appendix A

Calculations of the terms in wb in equation (5) using the

values for a, b and c in equations (27), (37) and (36), res-

pectively, give the following quantities to first order in u:

+:a~{ uxxzuyy
� �

ðA1Þ

+:c~uyyzuxz ðA2Þ

a:+|c~uxy ðA3Þ

b:+|c~{uxx ðA4Þ

c:+|c~uxy{uyz: ðA5Þ
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These lead to the following quantities that are used in

§ 2.3 when the elastic energy density is calculated to

second order in u:

+:að Þ2
~ uxxzuyy

� �2 ðA6Þ

+:cð Þ2
~ uyyzuxz

� �2 ðA7Þ

a:+|cð Þ2
~u2

xy ðA8Þ

b:+|cð Þ2
~u2

xx ðA9Þ

c:+|cð Þ2
~ uxy{uyz

� �2 ðA10Þ

+:að Þ b:+|cð Þ~uxx uxxzuyy
� �

ðA11Þ

a:+|cð Þ c:+|cð Þ~uxy uxy{uyz
� �

ðA12Þ

+:cð Þ b:+|cð Þ~{uxx uyyzuxz
� �

ðA13Þ

+:að Þ +:cð Þ~{ uxxzuyy
� �

uyyzuxz
� �

: ðA14Þ

Appendix B

The bulk energy wb in equation (5) has two other

equivalent nonlinear formulations of general interest

which are appropriately quoted below. The first

includes gradients of b and c in its formulation and

the second incorporates gradients in a and b. The

formulation of energy is usually chosen according to

the particular geometry being investigated. Clearly, wL

does not change while wm remains the same since it is

independent of the gradients of the director. It will now

be verified here that wb given by equation (62) (and

hence also w~wLzwmzwb) is independent of the

choice of the energy formulation.

For a, b and c given by equations (27), (37) and (36),

respectively, we have, in addition to the quantities

derived in appendix A, the following to first order

in u:

+:b~uyz{uxy ðA15Þ

a:+|b~uyy ðA16Þ

b:+|b~{ uxyzuyz
� �

ðA17Þ

c:+|b~uyy: ðA18Þ

For the b and c formulation given in [17], these

quantities give, to second order in u,

wb~
1

2
A12 b:+|cð Þ2

z
1

2
A21 c:+|bð Þ2

zA11 b:+|cð Þ c:+|bð Þz 1

2
B1 +:bð Þ2

z
1

2
B2 +:cð Þ2

z
1

2
B3

1

2
b:+|bzc:+|cð Þ

� 
2

z
1

2
B13 +:bð Þ b:+|bzc:+|cð Þ½ �

zC1 +:cð Þ b:+|cð ÞzC2 +:cð Þ c:+|bð Þ ðA19Þ

~
1

2
A12u

2
xxz

1

2
B2zA21z2C2ð Þu2

yy

z
1

2
B1zB3{2B13ð Þu2

yzz
1

2
B1u

2
xy{ A11zC1ð Þuxxuyy

z
1

2
B2u

2
xzz B2zC2ð Þuyyuxz{C1uxxuxz

z B13{B1ð Þuxyuyz: ðA20Þ
By using the identities (44) to (47) and discarding the

terms in uzz and surface contributions (for the same rea-

sons as given in the derivation of (48)), this now leads to

wb~
1

2
A12u

2
xxz

1

2
B2zA21z2C2ð Þu2

yy

z
1

2
B1{2 A11zC1ð Þ½ �uxxuyy{C1uxxuxz

z B2{B1zB13zC2ð Þuxyuyz ðA21Þ
which becomes precisely wb in equation (51) when u is

chosen as a variables separable solution satisfying the

conditions (50), following from the comments after

equation (49) above.

For the a and b formulation given in [17] we have

wb~
1

2
A12 +:að Þ2

z
1

2
B1 +:bð Þ2

z
1

2
B2 a:+|bð Þ2

z
1

2
B3 b:+|bð Þ2

z
1

2
2A11zA12zA21zB3ð Þ c:+|bð Þ2

z
1

2
2A11z2A12zB3ð Þ +:að Þ c:+|bð Þ

zB13 +:bð Þ b:+|bð Þz B13zC1ð Þ +:að Þ a:+|bð Þ

z B13zC1zC2ð Þ a:+|bð Þ c:+|bð Þ ðA22Þ

~
1

2
A12u

2
xxz

1

2
B2zA21z2C2ð Þu2

yy

{
1

2
2A11zB3z2B13z2C1ð Þuxxuyy

z
1

2
B1zB3{2B13ð Þu2

yzz B3{B1ð Þuxyuyz

z
1

2
B1zB3z2B13ð Þu2

xy:

Again, we can invoke the identities (44) to (47)

and discard terms in uzz and surface contributions,

(A23)
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resulting in

wb~
1

2
A12u

2
xxz

1

2
B2zA21z2C2ð Þu2

yy

z
1

2
B1{2 A11zC1ð Þ½ �uxxuyy

z B3{B1ð Þuxyuyz: ðA24Þ

As before, the last term in the above can be neglected

for variables separable solutions satisfying (50), result-

ing in the expression for wb used in equation (51).
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